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Multifractal spectra of chemical fields in fluid flows
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In the filamental phase of reactions embedded in fluid flows, where the concentration distribution is strongly
fluctuating, we show that a chemical measure can be defined based on the absolute value of the concentration
gradients. We express the generalized dimensions in terms of the roughness exponents of the structure func-
tions as well as of the cancellation exponents of the chemical concentration. This measure is of basically
different character than the natural distribution of the passive advection. It is similar to the SRB measures of
dissipative systems, although the advection problem is area preserving. This approach is shown to be a useful
tool in analyzing sea surface temperature anomalies.
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I. INTRODUCTION sion of the chemical reaction is in general less than that of

There has been an increasing interest in “active chaotie space of the flow, with an uniform natural distribution.
flows,” i.e., in the problem of how the outcome of chemical This implies thattypical concentration gradients can be
or biological reactions can be influenced by the presence dPund on a fractal subset of the full space only. More gener-
hydrodynamical currents which generate chaotic particle adally, we show here that in closed flows the chemical reaction
vection[1]. The topic is of great practical importance rang- itself produces themultifractality and selects its dimen-
ing from chemical engineering and combusti@j to geo-  sion(s).
physical problems like plankton bloom8,4] or ozone We first characterize the rough distribution in terms of
depletion[5,6]. cancellation exponents of sign-singular meas{t&—2Q

Earlier approaches have treated the problem of reactionghich turn out to be equivalent with the use of structure
in open and in closed flows separately. The reason is that ifunctions. Next, based on the way of how a probability mea-
the open case there is a well defined fractal charather sure can be associated with a sign-singular [@%, we de-
unstable manifold of the chaotic set is not space filliay  fine the chemical measure and express its multifractal dimen-
ready in the passive advection problem due to the flux ofions in terms of the cancellation and roughness exponents.
fluid flowing through the system, and the product distributionSimilar relations have already been found for the rough ve-
is a fractal of the same dimension as the unstable manifold dpcity fluctuations of fully developed turbuleng¢21], and the
the reaction free flof7—10]. The fractality originates here density fluctuations of a passive scalae]. The novel fea-
from the advection dynamics, and the chemical productgure of our result is that it holds for a chemicalctive
merely accumulate on it, as if it were a catalyst. In closedscalar.
flows, however, the passive advection spreads over the fluid The paper is organized as follows. In Sec. Il we present
(the unstable filamentation is space filllngnd so does the the model and review previous results. In Sec. Il the con-
product, too, in the active case. For certain parameters theentration distribution is characterized in terms of cancella-
distribution is smooth, for others, however, it might becometion exponents and roughness exponents. We derive a rela-
filamental (a smooth-filamental transiofl2,13 can take tion between the generalized dimensions of the chemical
place. In the filamental case the concentration distribution ismeasure and the above mentioned exponents. The validity of
rough. In the limit of weak diffusion, it is nondifferentiable this relation is checked in numerical simulations. An appli-
along the stable foliation. This roughness is characterized bgation to geophysical data is discussed in Sec. IV. A brief
Holder exponents or structure functiofkl—15. The con- summary is given in the concluding Sec. V.
centration distribution is a self-affine function whose support
is, however, not a fractdrather the space of the flgw Il. THE MODEL

Our aim is here to show that one can associate a fractal
(more precisely multifractal chemical distribution to the We consider the case of a single linearly decaying chemi-
filamental phase. This is achieved by defining a chemicafal substance advected by a time dependent two-dimensional
measure based on the absolute value of the concentratigosed flow. Although this seems to be a very special case,
gradients. This measure is of basically different charactegimilar behavior appears for chemical reaction systems with
than the natural distribution of the passive advection. It isa linearly stable equilibrium stafé1,14). A space dependent
similar to the SRB measures of dissipative systdh@]  sourceS(r) of the substance is also included, to maintain a
which is a multifractal distribution on chaotic attractors, al- nontrivial concentration field in a steady state.
though the advection problem is area preserving due to the The concentration fieldC(r), is governed by the partial
incompressibility of the flow. Thus, the information dimen- differential equation:
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&Cé‘ir) + U(r,t) .V C(r) = S(r) - bC(I’) + DAC(r),

(2.1

whereu(r ,t) is the known flow fieldp the decay rate, and
the diffusion coefficient. For a general decaying reactios
the absolute value of the Lyapunov exponent associated with
the chemical dynamical subsystem.

For the flow we take a simple time periodic velocity field
[23]. It is defined on a square of linear sike 1, with peri-
odic boundary conditions, by

uy(x,y,t) = 206 (3 - t mod 1sin(2my),

uy(x,y,t) =2U0(tmod 1 -3)sin(2mx), (2.2

whereO(x) is the Heaviside step function. In our simulations

U=1.2, which produces a flow with a single connected cha-

otic region in the advection dynamics. The value of the nu-

merically obtained Lyapunov exponent over one period, the

time unit, is\ = 2.7. Trajectories on a rectangular grid were o o1 02 03 o4 05 06 07 o8 o5 1

calculated and used to obtain the chemical field at each point X

fso(; tr;iélg%iry Si(:(ezca%lsnig(Zrea)c]tlo\?v Wlthn tik:je rS?hUrceit te[m FIG. 1. Snapshot of' the chemical patte_rn of the _decaying sub-

) Y ) e ™). . € conside € situa stance under the chaotic flo®.2) on the unit square in thé,y)

tion when the diffusive transport is much weaker than themane’ for decay rateb=2.4, and with sourceS=0.3§1

advective oneD <LU (the Péclet number is large +sin(2mx)sin(2my)]. Darker levels indicate smaller concentrations.
Depending on the relative strength of the chemical reacsjnce \=2.7>b, a filamental structure is seen. The lower figure

tion and advection, two qualitatively different phases canshows a cut of the concentration distribution takery=a0.25.
appear in the steady state: the concentration field can be

smooth or rough11-13, as the result of the competition In first approximation when the local Lyapunov exponents

between two effects. . .
One effect is that of the chaotic flow which in the absenceOlc the advection dynamics are assumed to be all the same

of reaction induces singular concentration patterns. A fluia(so_CaIIGd monoaffine casg12,13, one finds that
domain becomes stretched in long and thin filaments, and is {b }
a=miny —,1,

also repeatedly folded, producing a cascade of the inhomo-
geneities from the scale given by the source term toward
smaller scales. The other effect is due to the stable chemical
dynamics, which in a homogeneous environment tends t
relax to a constant equilibrium distribution given by the fixed
point of the reaction.

In the case of a slow chemical decay, filaments of hig
concentration persist for arbitrarily long times aligned with . . .
the unstable foFI)iation of the fIO\ﬁFig. 1).?fthe deca?/ of the In order to take into account the fluctuations in the

chemical dynamics is faster than the dispersion of the chaoti%Sgr?g?onnozh?zg&ergisn’ Stlkr::alligﬁcggtera(t:iirr‘l gg?ﬂsuﬁoitrgfctﬁf
trajectories in the physical space, irregularities of the field 9

decrease and finally a smooth distribution is obtained. Wheﬁhemlcal field as
the two effects become balanced, a smooth-filamental phase
transition[12,13 takes place in the system, a macroscopic

effect which affects the overall appearance of the chemic

field. tial regions. Above a certain cutoff scale’) the Holder

In the filamental phase, the steady chemical figld) is i d th h ;
rough, it is a self-affine function. Thus, the Holder exponentexponen () an e roughness exponerity) are not ex-

(«), given by the scaling of the concentration differencespeCted to dep_end on the_d|ﬁ95|orlcoeffE:|®1t
between two spatially close points: In monoaﬁlne ap.prOX|mat|o_rgq—qb/)\—qa. In_ ger)era_l,
' however,, is a nonlinear function ofj. The multiscaling is

|8C(or)| = |C(r + &) = C(r)| ~ |or]®, (2.3y  determined by the distribution of the local Lyapunov expo-
nents of the flow, since fractal sets with Lyapunov exponents
serves as a proper tool for a quantitative characterization different from\ dominate the scaling of the differegtorder
the steady state concentration distributions. moments ofsC.

(2.9

here\ is the average positive Lyapunov exponent of the

ow. This shows that the transition between the filamental
(rough and smooth concentration fields takes place when the
hLyapunov exponents of the chemical and advection dynam-
ics are equal in absolute value.

Sy(8r) =(|8C(ar)|% ~ | or|%, (2.5

ad\/here the average denoted Qyis taken over different spa-
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FIG. 2. The dependence of the scaling expongnon g with
reaction rated=1.02(circles andb=2.4 (squaresfor the reaction
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[17-20. A sign singular measure is a specific situation that
cannot be taken for granted for all measures on data set. In
order to decide if a measure is sign singular, one has to check
if it possesses a positive cancellation exporsee below.
We show that the concentration increments in the filamental
phase form a sign singular measure. The absolute value of
this measure, however, can be used to define probability
measures and we also show how the fractal properties of
these measures are related to the cancellation exponents
[18,2Q characterizing the sign singular concentration distri-
bution, and to the roughness exponetysof the structure
function.

A measure is called sign singular, if it fulfills the property
that the sum of the measure’s absolute values in boxes of
linear sizee diverges according to a power law fer— 0.

shown in Fig. 1. The continuous lines represent the theoretical preFhe cancellation exponent>0 of a sign singular measure

diction (2.8). A=0.45 is obtained by fitting Eq2.8) to the numeri-
cally obtained values of;. The monoaffine scaling,=dqe is rep-
resented by the dashed lines, whareb/\ with A\=2.7.

In the case when the probability distributi®i\’) of the
local Lyapunov exponents’ is Gaussian, i.e., when

P(\') ~ g Gt (2.6)
and
G(\') = M, 2.7
2A
an explicit form can be derived 1,13
gq(b>:\/(§)2+2%b—§. 2.8

For small variancesA of the Lyapunov distribution(A
<\?/b)

b

_ b q3b3A2
Gb)=ay =2

—_—— e

8 L @9

p defined on an interval is determined by computing the
measuregy;(e) of e-intervals via the relation

2 |uie)| ~ &7, (3.9

for sufficiently fine resolutions above the crossover seale
The cancellation exponent thus measures how rapidly the
derivative of the distribution changes sign with the resolu-
tion. Since the number of intervals is proportional tael/
this relation can also be written as

(ue)) ~ et

The average valué&aken with a uniform distribution along
an interval of the modulus of the sign singular measure thus
scales with the power 1 of the resolution.

The orderq cancellation exponent, is defined[20] as

S Ju(e)~ &7

(3.2

(3.3

A nontrivial , spectrum characterizes the inhomogeneity of
the cancellation effect in the distribution, in an analogous

thus the deviation from a dynamically monofractal behaviorV@y as the generalized dimensions characterize the inhomo-

produces a deviation from the monoaffine scaling.

geneous scaling in fractal probability measures. In terms of

The numerically obtained values &f are plotted in Fig. 2~ @n average

along with the curvé2.8), and the monoaffine scaling expo-

nents{,=qga with a=b/\, wherea=0.378 andx=0.889 for

the reaction rateb=1.02 andb=2.4, respectively. For com-

(|u(e)|h ~ &', (3.9
In general, the chemical concentration fi€¢x) along a

parison, the measured values of the first order roughness ekne transversal to the local unstable foliation of the flow is

ponent are;=0.352 and/;=0.755.

Ill. MULTIFRACTAL PROPERTIES OF THE
CONCENTRATION DISTRIBUTION

typically an irregularly changing positive and bounded func-
tion of the locationx. Its derivativedC/dx changes sign on
any scale down to a cutoff leng#i set by diffusion. A sign
singular chemical measure associated with an interval of

In the following we define a chemical measure based onengthe with x; as its left corner, can thus be defined as
the concentration gradients. The major problem in finding

this measure is, however, that the concentration gradients
change sign, and cannot define a probability measure since

the latter is positive by definition.

A. Sign singular measures: The cancellation exponent

Xite 59C
Mi(s)—JXi gdx, (3.5

and it possesses a cancellation exponent speckgr8ince
the absolute value of the sign singular measure is by defini-

Sign singular measures are distributions whose integraléon |ui(e)|=|C(x;+&)—C(x)|, the structure functio, given

change sign on arbitrary fine scal@bove a cutoff scale”)

by Eg. (2.5 can be expressed as
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S = ()], (3.6 wi(e) ~ |ule)le”, (3.13
which scales a$]~s§ft Therefore, in view of Eq(3.4),
f=1-x (3.7) i.e., the probability measure of an interval is the absolute
q - q- 0

value of the sign singular measure of the same interval mul-
We have thus obtained an explicit relation between roughtiplied by power« of the resolution. This relation is valid
ness exponents and cancellation exponésgg alsq22]). only with the conditione>¢", since the validity of Eq.
This implies that«>0 wheneverZ; <1, i.e., the concentra- (3.12 is restricted to cases when the number of terms in the
tion increments form then a sign singular measure. On thsum on the left-hand side is large. Substituting E3j13
other hand,f;<1 is the condition for a filamental phase, into the definition(3.9) of the generalized dimensions, and
which is an extension o<1 in Eq.(2.4) for flows with a  using Eq.(3.3) we obtain
Lyapunov exponent distribution.

B. Generalized dimensions and roughness exponents Dy=1 L I (3.14)
Consider now, in the spirit df20], the positive measure a-1
Xjte 5C
f —~ldx In terms of the scaling exponerftsee Eq(3.7)]
_ x | ox
ui(e) = C (3.9
— |dx 1-4(b)]-1+4(b
f IX Dyb) =1+ al gl(q)]_ 1 L ). (3.15
based on the absolute value of concentration gradients. Due
to the denominator, this is normalized, and can be considered
as a probability measure. Its generalized dimensypéol- A similar relation has been derived between the structure
low from the relation[24] function exponent and the generalized dimension of the ve-
locity fluctuations in fully developed 3D turbulenf21], and
> i(e)d ~ gPa D@D, (3.9  of a diffusively decaying passive tracer in quasigeostrophic
i

turbulence[22]. In our case the presence of an asymptotic
steady state is due to the chemical decay and the source, and
gtne roughness is generated by a smooth flow.

The generalized dimensions are functions of the chemical
reaction rateéb. Note that the parameters of the source distri-

It has been shown ih20] that these dimensions can be
expressed by means of the cancellation exponent of the si
singular measur¢3.5). To see this, let us imagine that the

interval of lengthe appearing in Eq(3.8) is decomposed : ; o )
into several intervals whose length is the lower cutdffOn bution do not appear, only its smoothness is importas

this scale, the concentration gradient does not change si@SO independent of the diffusion coefficient, since the rough-

any longer, therefore the measyzeof these intervals is the I.ess Iexgonen}s are. /?Ithm:gh tr;]e exampkle COUS'?Ered IS a
same as the absolute value of their sign singular measure in€arly decaying reaction, theé pneénomenology IS theé same
Thus for all chemical dynamics converging towards a stable state,

as justifed in[11,14]. Therefore Eq(3.15 is expected to be
— Silu(e") valid for general stable chemical dynamics whens the
wile)= ———, (3.10 decay ratdthe chemical Lyapunov exponertharacterizing
2 ilue) the convergence towards the chemical attractor.

where3'’ denotes that the summation is only over the small As a conclusion, we can claim that the self-affine distri-

intervals which fall into the large one of lengthIn order to ~ bution of the concentration gradients characterized by the
express the right-hand side via the sign singular measure &caling exponents determines the multifractal properties of
this whole interval, we observe first that the definiti@1) the positive measure based on the absolute value of the con-

of the cancellation exponent can equiva|ent|y be written as centration gradients. In other WordS, the result shows that the
chemical reaction puts on the passive advection problem a
> ui(e)]e =2 |mile)]e (3.1  measure different from its natural measnich is charac-

i i terized in closed flows bpP*S¥®=2). In the smooth phase
for any resolutione and &’ covering the same interval of when Z5=q, we find Dy=2. The presence of a nontrivial
some lengthe,. Applying this relation toe’ =&", and toe chemical muItlfracta}I spectrum thus implies the roughness of

o ’ 0 the concentration distribution.

& when n the 'a“?f case there is only one term on the Based on relation2.9) we obtain for the multifractal
right-hand side, we find spectrum

Ei,|/u‘i(8*)

e K
= |Mi(8)|<§) : (3.12
Since the denominator of E¢3.10 scales age’)™,
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Dy =0.755, EQq.(3.17 givesD;=1.955. The same information
2 T T y T T T T T dimension value can be read off from the grapHDgf
1.98 1
1.96 1
1.94 ¢ IV. APPLICATION TO SEA SURFACE
1.92 TEMPERATURE DATA
1.9}
1.88 1 An appealing application of the above ideas is the inves-
1.86 tigation of the sea surface temperat(88T) anomalies. SST

1.84 ' ! ' ) ' ' ! : can be considered in first approximation as a linearly decay-
ing substance towards its local average value. Abraham and
Bowen[15] analyzed satellite images with 1 km resolution
FIG. 3. The multifractal spectrum of the chemical measure forgf the SST distribution in a rectangular region of the size of
b=2.4. The error bars are obtained as the differences of the slop&g\y hundred kilometers in the Tasman sea, and found fila-
in the £ range[1/10241/25§ and[1/256,1/64. The continuous  an4a| distribution. Using estimated sea surface velocity
line represents e).(press"@'ls) based on the measured EXPONeNts y-ta obtained from correlations in sequential SST images,
{q presented in Fig. 2. they have shown that the advection dynamics is character-
ized by a spectrum of Lyapunov exponents whose distribu-
) . ) ) i _tion is of the type of Egs(2.6) and (2.7), with an average
An important special case of generalized dimensions i$yapunov exponent and variande=4x 107 1/s and A
the information dimensio,, since its deviation from the =4 5% 107 1/s, respectively. The decay rate of the SST
fractal dimension already implies multifractalitfand  gnomalies was found to bie=0.03/day. The authors were
Kaplan-Yorke type relations only contain the information di- gphje to determine the roughness exponefjtef the mea-
mension. We obtain from Eq(3.14 sured SST distribution in this time dependent flow. The spec-
trum ¢, was shown to obey the forf2.8) with good accu-

d i = —
Dy(b) =1+, - dkg racy. Extracting the valueg,;=0.65 anddgq/dq|q_1 0.483

dq | e from the data of 15], we obtain from Eq(3.17) the infor-
mation dimension of the measure based on the SST gradients
=2 (él— dZq ) asD;=1.833. It is remarkable that a clean fractal dimension
dq [ g=1 less than 2 can be associated with typical SST gradients.
1b2A  bRA2 Since the data fulfill botlk=«k,;=1-¢;>0 andD,<2=D,,
~2-——F+——5 (3.17  we conclude that the SST increments form a sign singular
2\ A measure, and their modulysafter normalizatioh yields a
) ) ) multifractal distribution.
Since the slopel{;/dq at q=1 is less thary; itself (cf. Furthermore, this oceanic flow provides an example of

Fig. 2, the information dimensio®;(b) is indeed less than tyo-dimensional turbulence, in which the time dependence
Do(b)=2. Thus, the measure based on the modulus of thef the locally smooth velocity field does not have any kind of
concentration increments is a multifractal measure. periodicity. This illustrates that the multifractal properties of
decaying fields can also be obtained in realistic situations,
when the flow is chaotically time dependent.
We note, that in general the oceanic velocity field cannot
C. Numerical results be obtained directly by remote sensing. Therefore, it is dif-
Since the validity of Eq(3.15) is constrained on the one ficult to quantify oceanic stirring by Lyapunov exponents
hand toe> ¢ to assure the statistical scaling behavior of the@nd their distribution. However, the distribution of SST is
sign singular measure with power and on the other hand to accessible with relatively high resolution. Thus, when SST
e<1 (1is the system sizdo produce the scaling with power increments form a sign singular measure, the relationship
D, the scaling behavior is restricted to a short range in Petween cancellation exponents and Lyapunov exponents
only. We determine the measure at the fixed vatie could be used to obtain information about the advection dy-
=1/4000, and evaluateu(s) in the range 1/400@e  Namics even without access to the velocity field.
<1/64.
The rangee €[1/1024,1/64] seems to be suitable for

dimension measurements, in agreement with the theoretical V. CONCLUSIONS
arguments which require’ <e<1. The average slopes of
the graphs I ! vs Ine in this range give the valueB,, Reactive flows can be characterized by various multiscal-

which are plotted in Fig. 3 along with the cur@.15 [25]. ing properties, described by apparently different exponents
An evaluation of the numerically obtained scaling expo-(kq, g, Dg) evaluated in this paper, but, in fact, they repre-

nents results in the derivativé?,/dg|,-;=0.71 for the case sent equivalent descriptions, since all of them are derived

b=2.4. Together with the first order roughness expongnt from the rough concentration fiel@(r). These exponents
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