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In the filamental phase of reactions embedded in fluid flows, where the concentration distribution is strongly
fluctuating, we show that a chemical measure can be defined based on the absolute value of the concentration
gradients. We express the generalized dimensions in terms of the roughness exponents of the structure func-
tions as well as of the cancellation exponents of the chemical concentration. This measure is of basically
different character than the natural distribution of the passive advection. It is similar to the SRB measures of
dissipative systems, although the advection problem is area preserving. This approach is shown to be a useful
tool in analyzing sea surface temperature anomalies.
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I. INTRODUCTION

There has been an increasing interest in “active chaotic
flows,” i.e., in the problem of how the outcome of chemical
or biological reactions can be influenced by the presence of
hydrodynamical currents which generate chaotic particle ad-
vection f1g. The topic is of great practical importance rang-
ing from chemical engineering and combustionf2g to geo-
physical problems like plankton bloomsf3,4g or ozone
depletionf5,6g.

Earlier approaches have treated the problem of reactions
in open and in closed flows separately. The reason is that in
the open case there is a well defined fractal charactersthe
unstable manifold of the chaotic set is not space fillingd al-
ready in the passive advection problem due to the flux of
fluid flowing through the system, and the product distribution
is a fractal of the same dimension as the unstable manifold of
the reaction free flowf7–10g. The fractality originates here
from the advection dynamics, and the chemical products
merely accumulate on it, as if it were a catalyst. In closed
flows, however, the passive advection spreads over the fluid
sthe unstable filamentation is space fillingd and so does the
product, too, in the active case. For certain parameters the
distribution is smooth, for others, however, it might become
filamental sa smooth-filamental transionf12,13g can take
placed. In the filamental case the concentration distribution is
rough. In the limit of weak diffusion, it is nondifferentiable
along the stable foliation. This roughness is characterized by
Hölder exponents or structure functionsf11–15g. The con-
centration distribution is a self-affine function whose support
is, however, not a fractalsrather the space of the flowd.

Our aim is here to show that one can associate a fractal
smore precisely multifractald chemical distribution to the
filamental phase. This is achieved by defining a chemical
measure based on the absolute value of the concentration
gradients. This measure is of basically different character
than the natural distribution of the passive advection. It is
similar to the SRB measures of dissipative systemsf16g
which is a multifractal distribution on chaotic attractors, al-
though the advection problem is area preserving due to the
incompressibility of the flow. Thus, the information dimen-

sion of the chemical reaction is in general less than that of
the space of the flow, with an uniform natural distribution.
This implies that typical concentration gradients can be
found on a fractal subset of the full space only. More gener-
ally, we show here that in closed flows the chemical reaction
itself produces thesmultidfractality and selects its dimen-
sionssd.

We first characterize the rough distribution in terms of
cancellation exponents of sign-singular measuref17–20g
which turn out to be equivalent with the use of structure
functions. Next, based on the way of how a probability mea-
sure can be associated with a sign-singular onef20g, we de-
fine the chemical measure and express its multifractal dimen-
sions in terms of the cancellation and roughness exponents.
Similar relations have already been found for the rough ve-
locity fluctuations of fully developed turbulencef21g, and the
density fluctuations of a passive scalarf22g. The novel fea-
ture of our result is that it holds for a chemicallyactive
scalar.

The paper is organized as follows. In Sec. II we present
the model and review previous results. In Sec. III the con-
centration distribution is characterized in terms of cancella-
tion exponents and roughness exponents. We derive a rela-
tion between the generalized dimensions of the chemical
measure and the above mentioned exponents. The validity of
this relation is checked in numerical simulations. An appli-
cation to geophysical data is discussed in Sec. IV. A brief
summary is given in the concluding Sec. V.

II. THE MODEL

We consider the case of a single linearly decaying chemi-
cal substance advected by a time dependent two-dimensional
closed flow. Although this seems to be a very special case,
similar behavior appears for chemical reaction systems with
a linearly stable equilibrium statef11,14g. A space dependent
sourceSsr d of the substance is also included, to maintain a
nontrivial concentration field in a steady state.

The concentration field,Csr d, is governed by the partial
differential equation:
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]Csr d
]t

+ usr ,td · = Csr d = Ssr d − bCsr d + DDCsr d,

s2.1d

whereusr ,td is the known flow field,b the decay rate, andD
the diffusion coefficient. For a general decaying reactionb is
the absolute value of the Lyapunov exponent associated with
the chemical dynamical subsystem.

For the flow we take a simple time periodic velocity field
f23g. It is defined on a square of linear sizeL=1, with peri-
odic boundary conditions, by

uxsx,y,td = 2UUs 1
2 − t mod 1dsins2pyd,

uysx,y,td = 2UUst mod 1 −1
2dsins2pxd, s2.2d

whereUsxd is the Heaviside step function. In our simulations
U=1.2, which produces a flow with a single connected cha-
otic region in the advection dynamics. The value of the nu-
merically obtained Lyapunov exponent over one period, the
time unit, isl<2.7. Trajectories on a rectangular grid were
calculated and used to obtain the chemical field at each point
for the linearly decaying reaction with the source term
Ssx,yd=0.35f1+sins2pxdsins2pydg. We consider the situa-
tion when the diffusive transport is much weaker than the
advective one:D,LU sthe Péclet number is larged.

Depending on the relative strength of the chemical reac-
tion and advection, two qualitatively different phases can
appear in the steady state: the concentration field can be
smooth or roughf11–15g, as the result of the competition
between two effects.

One effect is that of the chaotic flow which in the absence
of reaction induces singular concentration patterns. A fluid
domain becomes stretched in long and thin filaments, and is
also repeatedly folded, producing a cascade of the inhomo-
geneities from the scale given by the source term toward
smaller scales. The other effect is due to the stable chemical
dynamics, which in a homogeneous environment tends to
relax to a constant equilibrium distribution given by the fixed
point of the reaction.

In the case of a slow chemical decay, filaments of high
concentration persist for arbitrarily long times aligned with
the unstable foliation of the flowsFig. 1d. If the decay of the
chemical dynamics is faster than the dispersion of the chaotic
trajectories in the physical space, irregularities of the field
decrease and finally a smooth distribution is obtained. When
the two effects become balanced, a smooth-filamental phase
transition f12,13g takes place in the system, a macroscopic
effect which affects the overall appearance of the chemical
field.

In the filamental phase, the steady chemical fieldCsr d is
rough, it is a self-affine function. Thus, the Hölder exponent
sad, given by the scaling of the concentration differences
between two spatially close points:

udCsdr du ; uCsr + dr d − Csr du , udr ua, s2.3d

serves as a proper tool for a quantitative characterization of
the steady state concentration distributions.

In first approximation when the local Lyapunov exponents
of the advection dynamics are assumed to be all the same
sso-called monoaffine cased f12,13g, one finds that

a = minH b

l
,1J , s2.4d

wherel is the average positive Lyapunov exponent of the
flow. This shows that the transition between the filamental
sroughd and smooth concentration fields takes place when the
Lyapunov exponents of the chemical and advection dynam-
ics are equal in absolute value.

In order to take into account the fluctuations in the
Lyapunov exponents, similarly, one can define a structure
function characterizing the concentration distribution of the
chemical field as

Sqsdr d = kudCsdr duql , udr uzq, s2.5d

where the average denoted bykl is taken over different spa-
tial regions. Above a certain cutoff scales«*d the Hölder
exponentsad and the roughness exponentsszqd are not ex-
pected to depend on the diffusion coefficientD.

In monoaffine approximationzq=qb/l=qa. In general,
however,zq is a nonlinear function ofq. The multiscaling is
determined by the distribution of the local Lyapunov expo-
nents of the flow, since fractal sets with Lyapunov exponents
different froml dominate the scaling of the differentq-order
moments ofdC.

FIG. 1. Snapshot of the chemical pattern of the decaying sub-
stance under the chaotic flows2.2d on the unit square in thesx,yd
plane, for decay rateb=2.4, and with sourceS=0.35f1
+sins2pxdsins2pydg. Darker levels indicate smaller concentrations.
Since l=2.7.b, a filamental structure is seen. The lower figure
shows a cut of the concentration distribution taken aty=0.25.
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In the case when the probability distributionPsl8d of the
local Lyapunov exponentsl8 is Gaussian, i.e., when

Psl8d , e−Gsl8dt s2.6d

and

Gsl8d =
sl8 − ld2

2D
, s2.7d

an explicit form can be derivedf11,13g:

zqsbd =ÎS l

D
D2

+
2qb

D
−

l

D
. s2.8d

For small variancesD of the Lyapunov distributionsD
!l2/bd

zqsbd = q
b

l
−

q2

2

b2D

l3 +
q3

2

b3D2

l5 + ¯ , s2.9d

thus the deviation from a dynamically monofractal behavior
produces a deviation from the monoaffine scaling.

The numerically obtained values ofzq are plotted in Fig. 2
along with the curves2.8d, and the monoaffine scaling expo-
nentszq=qa with a=b/l, wherea=0.378 anda=0.889 for
the reaction ratesb=1.02 andb=2.4, respectively. For com-
parison, the measured values of the first order roughness ex-
ponent arez1=0.352 andz1=0.755.

III. MULTIFRACTAL PROPERTIES OF THE
CONCENTRATION DISTRIBUTION

In the following we define a chemical measure based on
the concentration gradients. The major problem in finding
this measure is, however, that the concentration gradients
change sign, and cannot define a probability measure since
the latter is positive by definition.

A. Sign singular measures: The cancellation exponent

Sign singular measures are distributions whose integrals
change sign on arbitrary fine scalessabove a cutoff scale«*d

f17–20g. A sign singular measure is a specific situation that
cannot be taken for granted for all measures on data set. In
order to decide if a measure is sign singular, one has to check
if it possesses a positive cancellation exponentssee belowd.
We show that the concentration increments in the filamental
phase form a sign singular measure. The absolute value of
this measure, however, can be used to define probability
measures and we also show how the fractal properties of
these measures are related to the cancellation exponents
f18,20g characterizing the sign singular concentration distri-
bution, and to the roughness exponentszq of the structure
function.

A measure is called sign singular, if it fulfills the property
that the sum of the measure’s absolute values in boxes of
linear size« diverges according to a power law for«→0.
The cancellation exponentk.0 of a sign singular measure
m defined on an interval is determined by computing the
measuresmis«d of «-intervals via the relation

o
i

umis«du , «−k, s3.1d

for sufficiently fine resolutions above the crossover scale«* .
The cancellation exponent thus measures how rapidly the
derivative of the distribution changes sign with the resolu-
tion. Since the number of intervals is proportional to 1/«,
this relation can also be written as

kums«dul , «1−k. s3.2d

The average valuestaken with a uniform distribution along
an intervald of the modulus of the sign singular measure thus
scales with the power 1−k of the resolution.

The orderq cancellation exponentkq is definedf20g as

o
i

umis«duq , «−kq. s3.3d

A nontrivial kq spectrum characterizes the inhomogeneity of
the cancellation effect in the distribution, in an analogous
way as the generalized dimensions characterize the inhomo-
geneous scaling in fractal probability measures. In terms of
an average

kums«duql , «1−kq. s3.4d

In general, the chemical concentration fieldCsxd along a
line transversal to the local unstable foliation of the flow is
typically an irregularly changing positive and bounded func-
tion of the locationx. Its derivative]C/]x changes sign on
any scale down to a cutoff length«* set by diffusion. A sign
singular chemical measure associated with an interval of
length« with xi as its left corner, can thus be defined as

mis«d =E
xi

xi+« ]C

]x
dx, s3.5d

and it possesses a cancellation exponent spectrumkq. Since
the absolute value of the sign singular measure is by defini-
tion umis«du= uCsxi +«d−Csxidu, the structure functionSq given
by Eq. s2.5d can be expressed as

FIG. 2. The dependence of the scaling exponentzq on q with
reaction ratesb=1.02scirclesd andb=2.4 ssquaresd for the reaction
shown in Fig. 1. The continuous lines represent the theoretical pre-
diction s2.8d. D.0.45 is obtained by fitting Eq.s2.8d to the numeri-
cally obtained values ofzq. The monoaffine scalingzq=qa is rep-
resented by the dashed lines, wherea=b/l with l=2.7.
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Sq = kums«duql, s3.6d

which scales asSq,«zq. Therefore, in view of Eq.s3.4d,

zq = 1 −kq. s3.7d

We have thus obtained an explicit relation between rough-
ness exponents and cancellation exponentsssee alsof22gd.
This implies thatk.0 wheneverz1,1, i.e., the concentra-
tion increments form then a sign singular measure. On the
other hand,z1,1 is the condition for a filamental phase,
which is an extension ofa,1 in Eq. s2.4d for flows with a
Lyapunov exponent distribution.

B. Generalized dimensions and roughness exponents

Consider now, in the spirit off20g, the positive measure

m̄is«d =

E
xi

xi+« U ]C

]x
Udx

E U ]C

]x
Udx

s3.8d

based on the absolute value of concentration gradients. Due
to the denominator, this is normalized, and can be considered
as a probability measure. Its generalized dimensionsDq fol-
low from the relationf24g

o
i

m̄is«dq , «sDq−1dsq−1d. s3.9d

It has been shown inf20g that these dimensions can be
expressed by means of the cancellation exponent of the sign
singular measures3.5d. To see this, let us imagine that the
interval of length« appearing in Eq.s3.8d is decomposed
into several intervals whose length is the lower cutoff«* . On
this scale, the concentration gradient does not change sign
any longer, therefore the measurem̄ of these intervals is the
same as the absolute value of their sign singular measurem.
Thus

m̄is«d =
o i8ums«*du
o iums«*du

, s3.10d

whereo8 denotes that the summation is only over the small
intervals which fall into the large one of length«. In order to
express the right-hand side via the sign singular measure of
this whole interval, we observe first that the definitions3.1d
of the cancellation exponent can equivalently be written as

o
j

um js«du«k = o
i

umis«8du«8k s3.11d

for any resolution« and «8 covering the same interval of
some length«0. Applying this relation to«8=«* , and to«0
=«, when in the latter case there is only one term on the
right-hand side, we find

oi
8umis«*du = umis«duS «

«* Dk

. s3.12d

Since the denominator of Eq.s3.10d scales ass«*d−k,

m̄is«d , ums«du«k, s3.13d

i.e., the probability measure of an interval is the absolute
value of the sign singular measure of the same interval mul-
tiplied by powerk of the resolution. This relation is valid
only with the condition«@«* , since the validity of Eq.
s3.12d is restricted to cases when the number of terms in the
sum on the left-hand side is large. Substituting Eq.s3.13d
into the definitions3.9d of the generalized dimensions, and
using Eq.s3.3d we obtain

Dq = 1 +
kq − kq

q − 1
. s3.14d

In terms of the scaling exponentsfsee Eq.s3.7dg

Dqsbd = 1 +
qf1 − z1sbdg − 1 +zqsbd

q − 1
. s3.15d

A similar relation has been derived between the structure
function exponent and the generalized dimension of the ve-
locity fluctuations in fully developed 3D turbulencef21g, and
of a diffusively decaying passive tracer in quasigeostrophic
turbulencef22g. In our case the presence of an asymptotic
steady state is due to the chemical decay and the source, and
the roughness is generated by a smooth flow.

The generalized dimensions are functions of the chemical
reaction rateb. Note that the parameters of the source distri-
bution do not appear, only its smoothness is important.Dq is
also independent of the diffusion coefficient, since the rough-
ness exponents are. Although the example considered is a
linearly decaying reaction, the phenomenology is the same
for all chemical dynamics converging towards a stable state,
as justifed inf11,14g. Therefore Eq.s3.15d is expected to be
valid for general stable chemical dynamics whenb is the
decay ratesthe chemical Lyapunov exponentd characterizing
the convergence towards the chemical attractor.

As a conclusion, we can claim that the self-affine distri-
bution of the concentration gradients characterized by the
scaling exponents determines the multifractal properties of
the positive measure based on the absolute value of the con-
centration gradients. In other words, the result shows that the
chemical reaction puts on the passive advection problem a
measure different from its natural measureswhich is charac-
terized in closed flows byDq

spassived;2d. In the smooth phase
when zq=q, we find Dq;2. The presence of a nontrivial
chemical multifractal spectrum thus implies the roughness of
the concentration distribution.

Based on relations2.9d we obtain for the multifractal
spectrum

Dqsbd = 2 −
q

2

b2D

l3 +
1

2
qsq + 1d

b3D2

l5 + ¯ . s3.16d
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An important special case of generalized dimensions is
the information dimensionD1, since its deviation from the
fractal dimension already implies multifractalitysand
Kaplan-Yorke type relations only contain the information di-
mensiond. We obtain from Eq.s3.14d

D1sbd = 1 +k1 −Udkq

dq
U

q=1

= 2 −Sz1 −Udzq

dq
U

q=1
D

< 2 −
1

2

b2D

l3 +
b3D2

l5 + ¯ . s3.17d

Since the slopedz1/dq at q=1 is less thanz1 itself scf.
Fig. 2d, the information dimensionD1sbd is indeed less than
D0sbd=2. Thus, the measure based on the modulus of the
concentration increments is a multifractal measure.

C. Numerical results

Since the validity of Eq.s3.15d is constrained on the one
hand to«@«* to assure the statistical scaling behavior of the
sign singular measure with powerk, and on the other hand to
«!1 s1 is the system sized to produce the scaling with power
Dq, the scaling behavior is restricted to a short range in«
only. We determine the measure at the fixed value«*

=1/4000, and evaluatem̄s«d in the range 1/4000,«
,1/64.

The range«P f1/1024,1/64g seems to be suitable for
dimension measurements, in agreement with the theoretical
arguments which require«* !«!1. The average slopes of
the graphs lno m̄i

q vs ln« in this range give the valuesDq,
which are plotted in Fig. 3 along with the curves3.15d f25g.

An evaluation of the numerically obtained scaling expo-
nents results in the derivativedzq/dquq=1=0.71 for the case
b=2.4. Together with the first order roughness exponentz1

=0.755, Eq.s3.17d gives D1=1.955. The same information
dimension value can be read off from the graph ofDq.

IV. APPLICATION TO SEA SURFACE
TEMPERATURE DATA

An appealing application of the above ideas is the inves-
tigation of the sea surface temperaturesSSTd anomalies. SST
can be considered in first approximation as a linearly decay-
ing substance towards its local average value. Abraham and
Bowen f15g analyzed satellite images with 1 km resolution
of the SST distribution in a rectangular region of the size of
few hundred kilometers in the Tasman sea, and found fila-
mental distribution. Using estimated sea surface velocity
data obtained from correlations in sequential SST images,
they have shown that the advection dynamics is character-
ized by a spectrum of Lyapunov exponents whose distribu-
tion is of the type of Eqs.s2.6d and s2.7d, with an average
Lyapunov exponent and variancel=4310−7 1/s and D
=4.5310−7 1/s, respectively. The decay rate of the SST
anomalies was found to beb=0.03/day. The authors were
able to determine the roughness exponentszq of the mea-
sured SST distribution in this time dependent flow. The spec-
trum zq was shown to obey the forms2.8d with good accu-
racy. Extracting the valuesz1=0.65 anddzq/dquq=1=0.483
from the data off15g, we obtain from Eq.s3.17d the infor-
mation dimension of the measure based on the SST gradients
asD1=1.833. It is remarkable that a clean fractal dimension
less than 2 can be associated with typical SST gradients.
Since the data fulfill bothk;k1=1−z1.0 andD1,2=D0,
we conclude that the SST increments form a sign singular
measure, and their modulussafter normalizationd yields a
multifractal distribution.

Furthermore, this oceanic flow provides an example of
two-dimensional turbulence, in which the time dependence
of the locally smooth velocity field does not have any kind of
periodicity. This illustrates that the multifractal properties of
decaying fields can also be obtained in realistic situations,
when the flow is chaotically time dependent.

We note, that in general the oceanic velocity field cannot
be obtained directly by remote sensing. Therefore, it is dif-
ficult to quantify oceanic stirring by Lyapunov exponents
and their distribution. However, the distribution of SST is
accessible with relatively high resolution. Thus, when SST
increments form a sign singular measure, the relationship
between cancellation exponents and Lyapunov exponents
could be used to obtain information about the advection dy-
namics even without access to the velocity field.

V. CONCLUSIONS

Reactive flows can be characterized by various multiscal-
ing properties, described by apparently different exponents
skq,zq,Dqd evaluated in this paper, but, in fact, they repre-
sent equivalent descriptions, since all of them are derived
from the rough concentration fieldCsr d. These exponents

FIG. 3. The multifractal spectrum of the chemical measure for
b=2.4. The error bars are obtained as the differences of the slopes
in the « rangef1/1024,1/256g and f1/256,1/64g. The continuous
line represents expressions3.15d based on the measured exponents
zq presented in Fig. 2.
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could be used to characterize statistical scaling properties of
the chemical concentration fluctuations in measured data ob-
tained from geophysical observations or laboratory experi-
ments. They provide a way to extract information beyond the
mean concentrations of the different chemical components,
that could be used, for example, as a tool for monitoring
changes in the complex chemical or transport processes
involved.
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